
ASG-DataManager™

ADABAS Interface
Version: 2.5

Publication Number: DMR0200-25-ADA
Publication Date: April 1985

The information contained herein is the confidential and proprietary information of Allen Systems Group, Inc. Unauthorized use of this
information and disclosure to third parties is expressly prohibited. This technical publication may not be reproduced in whole or in part, by

any means, without the express written consent of Allen Systems Group, Inc.

© 1998-2001 Allen Systems Group, Inc. All rights reserved.
All names and products contained herein are the trademarks or registered trademarks of their respective holders.

ASG Worldwide Headquarters Naples, Florida USA | asg.com

1333 Third Avenue South, Naples, Florida 34102 USA Tel: 941.435.2200 Fax: 941.263.3692 Toll Free: 1.800.932.5536

© 2001 Allen Systems Group, Inc.
All names and products are trademarks or registered trademarks of their respective holders.

ASG Documentation/Product Enhancement Fax Form
Please FAX comments regarding ASG products and/or documentation to (941) 263-3692.

Company Name Telephone Number Site ID Contact name

Product Name/Publication Version # Publication Date

Product:

Publication:

Tape VOLSER:

Enhancement Request:

ASG Support Numbers
ASG provides support throughout the world to resolve questions or problems regarding
installation, operation, or use of our products. We provide all levels of support during normal
business hours and emergency support during non-business hours. To expedite response time,
please follow these procedures.

Please have this information ready:

• Product name, version number, and release number

• List of any fixes currently applied

• Any alphanumeric error codes or messages written precisely or displayed

• A description of the specific steps that immediately preceded the problem

• The severity code (ASG Support uses an escalated severity system to prioritize service to
our clients. The severity codes and their meanings are listed below.)

If You Receive a Voice Mail Message:

1 Follow the instructions to report a production-down or critical problem.

2 Leave a detailed message including your name and phone number. A Support representative
will be paged and will return your call as soon as possible.

3 Please have the information described above ready for when you are contacted by the Support
representative.

Severity Codes and Expected Support Response Times

ASG provides software products that run in a number of third-party vendor environments. Support
for all non-ASG products is the responsibility of the respective vendor. In the event a vendor
discontinues support for a hardware and/or software product, ASG cannot be held responsible for
problems arising from the use of that unsupported version.

Severity Meaning Expected Support Response
Time

1 Production down,
critical situation

Within 30 minutes

2 Major component of product disabled Within 2 hours

3 Problem with the product, but customer has
work-around solution

Within 4 hours

4 "How-to" questions and enhancement
requests

Within 4 hours

Business Hours Support

Non-Business Hours - Emergency Support

Your Location Phone Fax E-mail

United States and
Canada

800.354.3578

1.941.435.2201

Secondary Numbers:

800.227.7774

800.525.7775

941.263.2883 support@asg.com

Australia 61.2.9460.0411 61.2.9460.0280 support.au@asg.com

England 44.1727.736305 44.1727.812018 support.uk@asg.com

France 33.141.028590 33.141.028589 support.fr@asg.com

Germany 49.89.45716.300 49.89.45716.400 support.de@asg.com

Singapore 65.224.3080 65.224.8516 support.sg@asg.com

All other countries: 1.941.435.2201 support@asg.com

Your Location Phone Your Location Phone

United States and
Canada

800.354.3578
1.941.435.2201
Secondary Numbers:
800.227.7774
800.525.7775
Fax:
941.263.2883

Asia 011.65.224.3080 Japan/Telecom 0041.800.9932.5536

Australia 0011.800.9932.5536 New Zealand 00.800.9932.5536

Denmark 00.800.9932.5536 South Korea 001.800.9932.5536

France 00.800.9932.5536 Sweden/Telia 009.800.9932.5536

Germany 00.800.9932.5536 Switzerland 00.800.9932.5536

Hong Kong 001.800.9932.5536 Thailand 001.800.9932.5536

Ireland 00.800.9932.5536 United Kingdom 00.800.9932.5536

Israel/Bezeq 014.800.9932.5536

Japan/IDC 0061.800.9932.5536 All other countries 1.941.435.2201

ASG Web Site
Visit http://www.asg.com, ASG�s World Wide Web site.

Submit all product and documentation suggestions to ASG�s product management team at
http://www.asg.com/products/suggestions.asp

If you do not have access to the web, FAX your suggestions to product management at (941)
263-3692. Please include your name, company, work phone, e-mail ID, and the name of the ASG
product you are using. For documentation suggestions include the publication number located on
the publication�s front cover.

http://www.asg.com/products/suggestions.asp
http://www.asg.com

Contents
S

e
Preface iii
About this Publication iii
Publication Conventions iv
Requesting Publication Changes iv

1 DataManager/ADABAS Interface Facilities 1

2 ADABAS Databases and DataManager 3
Introduction 3
Further Considerations 5

ADABAS Fields 5
Names of ADABAS Entities 5

3 DataManager Data Definition Statements for ADABAS Databases 7
The ADABAS-DATABASE Data Definition Statement 7
The File Data Definition Statement for ADABAS Files 10
System, Program and Module Data Definition Statements for an ADABA
Environment 14

Introduction 14
Specification of the PROCESSES Clause 14

ADABAS-related Aspects of the Item Data Definition Statement 20
Generation of ADABAS Attributes 20
Generation of BITS Items 20

4 ADABAS Source Language Generation from DataManager 21
Introduction 21
Specification of the PRODUCE Command for ADABAS Source Languag
Generation 22

5 DataManager/ADABAS Correspondence Tables 29

Appendix
The Macro DGADA 33

Index 37
i

ASG-DataManager ADABAS Interface

ii

Preface
,

 or on

S

the
ent.

e
ity.
This ASG-DataManager ADABAS Interface publication describes the ADABAS Interface facility
which enables the user to include ADABAS database and file data definitions in the data
dictionary, to produce ADABAS LOADER definition cards, and to produce data description
statements for ADABAS record buffers and format buffers in COBOL, PL/I, or BAL. Record
layouts for ADABAS files and buffers can also be produced.

ASG welcomes your comments, as a preferred or prospective customer, on this publication
the ASG-DataManager product (herein called DataManager).

About this Publication

The ASG-DataManager ADABAS Interface consists of these chapters:

• Chapter 1, "DataManager/ADABAS Interface Facilities," summarizes the interfaces
between DataManager and ADABAS.

• Chapter 2, "ADABAS Databases and DataManager," discusses the concept of ADABA
databases and illustrates how ADABAS can be defined to DataManager.

• Chapter 3, "DataManager Data Definition Statements for ADABAS Databases," gives
specifications of the DataManager data definition statements for an ADABAS environm

• Chapter 4, "ADABAS Source Language Generation from DataManager," describes th
interface between ADABAS and the DataManager Source Language Generation facil

• Chapter 5, "DataManager/ADABAS Correspondence Tables," specifies the direct
relationships that exist between ADABAS and DataManager data definitions.
iii

ASG-DataManager ADABAS Interface

t
 is
ident

s.

is

,
Publication Conventions

ASG’s technical publications use these conventions:

Requesting Publication Changes

Customers and other ASG departments can use a Documentation Correction/Enhancemen
Request Form to request corrections, updates, and enhancements to publications. The form
included in the front matter of each publication. Forms are also available from the Vice Pres
of Technical Publications.

The Vice President of Technical Publications evaluates requests for documentation change

Convention Represents

ALL CAPITALS Directory, path, file, dataset, member, database, program,
command, and parameter names.

Initial Capitals on Each Word Window, field, field group, check box, button, panel (or
screen), option names, and names of keys. A plus sign (+)
inserted for key combinations (e.g., Alt+Tab).

lowercase italic
monospace

Information that you provide according to your particular
situation. For example, you would replace filename with
the actual name of the file.

Monospace Characters you must type exactly as they are shown. Code
JCL, file listings, or command/statement syntax.

Also used for denoting brief examples in a paragraph.
iv

1
 1DataManager/ADABAS Interface

Facilities
data

or

. This

ent,
f a
a
ts

her
in

in the
nd
nds:
These interface facilities between DataManager and ADABAS are provided by ASG for the
ADABAS user:

• The ability to define ADABAS databases to DataManager, to hold the definitions in the
dictionary, and to process them by the standard DataManager commands

• The ability to generate definition cards that are used by the ADABAS LOADER utility f
the initial definition and loading of an ADABAS file

• The ability to generate from the data dictionary, and to insert into the required source
library, record buffer layouts and format buffer layouts, which are compiled into user
programs and utilised by ADABAS at program execution time.

The ability to define an ADABAS database demands a further member type in DataManager
member type is ADABAS-DATABASE, which in the member type hierarchy comes between
MODULE and FILE. Also required are specific extensions to the FILE data definition statem
to cater for ADABAS files. Additionally, facilities are required to allow the processing view o
database to be defined; these are provided at the SYSTEM, PROGRAM, and MODULE dat
definition levels. The ADABAS-DATABASE data definition statement and the relevant forma
of the FILE and the SYSTEM, PROGRAM and MODULE data definition statements are furt
discussed in Chapter 2, "ADABAS Databases and DataManager," on page 3 and specified
Chapter 3, "DataManager Data Definition Statements for ADABAS Databases," on page 7.

So that the definitions of ADABAS databases and files may be processed by DataManager
same way as other members of the data dictionary, the keywords ADABAS-DATABASES a
ADABAS-FILES are added to the member-type keywords available for use in these comma

• BULK

• GLOSSARY

• LIST

• PERFORM

• REPORT

• WHICH.
1

ASG-DataManager ADABAS Interface

and

HAT

the

t
ration

/I, or

ge 21.
In addition, the following keywords are available for use within the VIA clause of the WHICH
WHAT commands:

• ACCESSES

• GIVING

• USING

• EDIT-NAME

• COUNTS-AS

• COUPLE

• CIPHER

• DESCRIPTORS

• SUB-DESCRIPTORS

• SUPER-DESCRIPTORS

• FIELD-NAMES

• PHONETIC-NAMES

These keywords are additional to those described in the specifications of the WHICH and W
commands. Apart from the keyword ACCESSES, which is available for use with the IDMS
Interface and the System 2000/80 Interface, these keywords are specifically for use with the
ADABAS Interface. These points regarding their use should be noted:

• The keywords GIVING and USING have the same meaning

• An interrogation that includes VIA GIVING or VIA USING refers to all attributes or
subordinate clauses of the GIVING or USING clause, except for the EDIT-NAME and
COUNTS-AS subordinate clauses

The ability to generate ADABAS LOADER Definition Cards, record buffer layouts and forma
buffer layouts from data dictionary members requires the use of the Source Language Gene
facility, which is described in a separate manual. The Source Language Generation manual
describes the basic version of the facility, which can output data descriptions in COBOL, PL
BAL. The enhancements to the facility to enable it to generate ADABAS specific outputs are
discussed in Chapter 4, "ADABAS Source Language Generation from DataManager," on pa
2

2
 2ADABAS Databases and DataManager

Introduction

E 5.
ling)
LE 1,

FILE 1
The ability to give a complete definition of an ADABAS database is available within
DataManager.

From a data viewpoint the ADABAS system is a collection of up to 255 files referred to as a
database. Within this database various links can be established between the stored data.

Consider, for example, a database as follows:

The database named ADAl consists of the five files, FILE 1, FILE 2, FILE 3, FILE 4, and FIL
There are seven established links (defined by ADABAS Descriptors or sometimes File Coup
that show how the data in those files is logically connected. Thus by accessing data from FI
data from all, some or none of the files FILE 2, FILE 4, and FILE 5 will be accessed. It is, of
course, possible that because the files FILE 2 and FILE 3 are linked then accessing data in
could also cause access to the data in FILE 3.

ADA1

FILE 1

FILE 5

FILE 4

FILE 3

FILE 2
3

ASG-DataManager ADABAS Interface

 the
e
r

 in
remely
or more

ate
ent
ether

EM

ample,

s shown
 any
For DataManager the above structure would be represented as an ADABAS-DATABASE
member containing five FILE members. The linkages between the files would be specified in
ADABAS-DATABASE member. The separate FILE members would contain details of the fil
contents. The fields which constitute the files would be defined via the normal DataManage
GROUP and ITEM data definition statements.

This is a simplified look at the database side of the stored data. Still to be defined is the way
which the data is accessed. Any given program which accesses an ADABAS database is ext
unlikely to access every single field stored in the database. Even if a program accesses one
specific files in the database it is still unlikely to want each field in those files. Furthermore, a
given program may have restrictions placed on it, in that it may only read certain fields, upd
other fields1 etc. A DataManager SYSTEM, PROGRAM, or MODULE data definition statem
can be used to define which databases, files, and fields are processed in an application, tog
with field sensitivity.

Thus, to define ADABAS databases to DataManager, the ADABAS-DATABASE, FILE, and
SYSTEM, PROGRAM, or MODULE member types are used. DataManager GROUP and IT
members define the fields in the database files.

If certain assumptions are made regarding specific attributes of the database in the above ex
then the following would be the method of using DataManager data definition statements to
describe the database and one application which accesses the database. The data definition
can be inserted into the data dictionary by INSERT or ADD commands, in the same way as
other DataManager data definitions.

ADD ADA1;
ADABAS-DATABASE
CONTAINS FILE1 1, FILE2 2, FILE3 3, FILE4 4, FILE5 5
DEVICE DISK 3330
COUPLE FILEl TO FILE2, FILE4, FILE5
 BY PERSONNEL-NUMBER,
FILE2 TO FILE3, FILE5 BY SALARY,
FILE3 TO FILE4 BY AGE,
FILE4 TO FILE5 BY CITY
CIPHER FILEl BY 10, FILE3 BY 12586
;

ADD FILE1;
FILE ADABAS
CONTAINS PERSONNEL-NUMBER, NAME,
 ADDRESS-LINE1, ADDRESS-LINE2, ADDRESS-LINE3,
 CITY, STATE, ZIP-CODE
DESCRIPTORS PERSONNEL-NUMBER, CITY
;

ADD FILE2;
FILE ADABAS
CONTAINS PERSONNEL-NUMBER,
 SOCIAL-SECURITY-NUMBER, TAX-CODE,
 SALARY, (12) MONTHLY-PAY
DESCRIPTORS PERSONNEL-NUMBER, SALARY
;

4

2 ADABAS Databases and DataManager

.

a
; this
 given

d has

ty can
ser so
FILE3, FILE4, and FILE5 similar to FILEl and FILE2.

ADD PAYE99;
PROGRAM
LANGUAGE 'COBOL'
PROCESSES ADABAS
 ACCESS CALL1 FILE FILEl
 USING PERSONNEL-NUMBER EDIT-CODE 'El',
 CITY, (3) ' ',
 STATE
 ACCESS CALL2 FILE FILE2
 GIVING PERSONNEL-NUMBER,
 MONTHLY-PAY OCCURRENCES 1 THRU 6
;

Further Considerations

ADABAS Fields

DataManager GROUPs and ITEMs are used to represent the fields contained in the FILEs
constituting an ADABAS-DATABASE. A GROUP can contain ITEMs and/or other GROUPS

ADABAS multiple value fields are defined in the CONTAINS clauses of FILE or GROUP
members, as multiple occurrences of an ITEM member; that is, in the form (occurs bound)
item-name.

ADABAS periodic group fields are defined in the CONTAINS clauses of FILE or GROUP
members, as multiple occurrences of a GROUP member; that is, in the form (occurs bound)
group-name.

Names of ADABAS Entities

DataManager provides three methods of naming entities used in ADABAS databases.

ADABAS entities (fields, records, files, databases) are defined to DataManager as ITEMs,
GROUPs, FILEs, or ADABAS-DATABASEs and their data definitions are inserted into a dat
dictionary as members of that dictionary. When each member is inserted, it is given a name
name is its member name. It is unlikely that the member name will be the same as the name
to the entity within ADABAS. The reason for this is that ADABAS names are cryptic and
restricted in length and format. The member name, however, will normally be meaningful an
a larger length limit (32 characters) and a fairly unrestricted format.

The second method of naming an ADABAS entity is provided by the ALIAS clause, which is
available in all DataManager data definition statements. This clause can be used to define a
specific ADABAS name as an alias of the member. The Source Language Generation facili
apply the ADABAS aliases (instead of the member names) to the generated entities if the u
specifies.
5

ASG-DataManager ADABAS Interface

us,
AS

is

or
Ideally an ADABAS field/record name ought to be consistent throughout an organisation. Th
for example, whenever "A2" is referred to it is unambiguous as it always indicates the ADAB
alias for a specific ITEM. However, this is not always possible, so a third naming technique
provided when an ADABAS file is defined to DataManager. This allows a specific ADABAS
name to be associated with a specific ITEM or GROUP for the file being defined. See the
specification of the KNOWN-AS local-name clause, in "The File Data Definition Statement f
ADABAS Files" on page 10.
6

3
 3DataManager Data Definition Statements

for ADABAS Databases
r
The ADABAS-DATABASE Data Definition Statement

Format

where:

filename-entry is defined as:

filename [adabas-code]

where:

filename is the name of a file within the ADABAS database

adabas-code is an integer in the range 1 to 255, being the ABABAS file numbe
of the file within the database being defined. The adabas-code must either be
present in all filename-entries , or be present in none.

xxxx is a 4-character generic device type

yyyy is a 4-digit specific device type

ADABAS-DATABASE

[CONTAINS filename-entry [, filename-entry]. . .]

[DEVICE xxxx [yyyy]]
yyyy

[COUPLE filename T O filename [, filename]. . .B Y item-name
WITH

[, filename T O filename [, filename]. . .B Y item-name]. . .]
WITH

[CI PHER filename [, filename]. . . B Y code
WITH item-name-a

[, filename [, filename]. . . B Y code
WITH item-name-a

[common clauses]
 ;
 .

]. . .]
7

ASG-DataManager ADABAS Interface

ng

d to

o
 a
nly

er

of
item-name is the name of an item that is defined as a descriptor in all of the files bei
coupled together

code is a 1- to 8-digit integer used by ADABAS to generate a code table which is use
cipher the data stored in the ADABAS file

item-name-a is an item capable of holding a code (where code is as defined above)

common clauses are any of the following clauses, in any order:

ACCESS-AUTHORITY FREQUENCY
ADMINISTRATIVE-DATA N OTE
ALIAS OBSOLETE-DATE
CATALOGUE QUERY
COMMENT SECURITY-CLASSIFICATION
DESCRIPTION SEE
EFFECTIVE-DATE

Remarks

1. Filenames must conform to the rules for member names.

2. The CONTAINS keyword is followed by a list of from one to 255 filename-entries. If tw
or more filename-entries are listed, each except the last in the list must be followed by
comma. Filename-entries may be additionally separated from each other by spaces. O
one CONTAINS clause can appear.

3. If adabas-code is not specified in the filename-entries, then on encoding DataManag
generates adabas-code numbers sequentially from 1 for the files named in the
CONTAINS clause. If adabas-code is specified in the first filename-entry but is
omitted from a subsequent filename-entry , the error message:

ADABAS-CODE ENTRY MISSING OR INCOMPLETE

is output, and encoding fails. If adabas-code is not specified for the first
filename-entry but is specified for a subsequent one, the warning message:

adabas-code SUPERFLUOUS FILE CODE - IGNORED

is output, and encoding proceeds with the DataManager generated adabas-code
numbers applied.

4. If a four character generic device type is stated in the DEVICE clause, it must be one
these:

DASD (for Direct Access Storage Device)
DISK
DRUM
8

3 DataManager Data Definition Statements for ADABAS Databases

se:

lause

r. A

d to
le

me
 be

e is

).

d
an

 of the

ainst
 a

r or
 with
his

data
quently
is
ment

t
e
ate
5. If a four digit specific device type is stated in the DEVICE clause, it must be one of the

2305
2314
3330
3340
3350
4580

These are the devices on which ADABAS databases may be held. Only one DEVICE c
can appear. If the DEVICE clause is omitted, a default of DISK 2314 is taken.

6. COUPLE clauses specify the files that are coupled together on the database, and the
descriptors used to achieve the coupling. Any number of COUPLE clauses may appea
filename is coupled to one or more other filenames by an item-name (item-name must
be defined as a DESCRIPTOR in all of the files concerned). A filename may be couple
a maximum of 180 other filenames. Any two filenames may only be coupled by a sing
item-name.

The keyword TO or WITH is followed by a list of from one to 180 filenames; each filena
except the last in the list must be followed by a comma and may optionally additionally
followed by spaces. The last filename in the list is followed by the keyword BY and an
item-name . If the same file is coupled to another list of filenames, item-name is
followed by a comma and optionally additionally by spaces. Coupling for a new filenam
specified in a new COUPLE clause. Coupling is defined one-way only (for example, if
FILE1 is coupled to FILE2 it is not necessary to specify that FILE2 is coupled to FILE1

7. CIPHER clauses specify the cipher code used by ADABAS storing data in the specifie
filename. Any number of CIPHER clauses may appear, but only one CIPHER clause c
appear for each filename.

8. Because of the sensitive nature of the information in the CIPHER clauses, it is
recommended that the Controller issue a PROTECT command to prevent other users
data dictionary from accessing the definition of the database; alternatively, an item-name
may be specified in the CIPHER clause, and the Controller may PROTECT the item ag
access by other users. (The Controller would define a HELD-AS form for the item with
CONTENTS clause giving the actual cipher value.)

9. Common clauses , listed under Format above, can be present in any type of data
definition statement. Not more than one of each of these clauses can be declared. If a
common clause has a subordinate clause or keyword, the subordinate clause identifie
subordinate keyword must not be truncated to an extent where it becomes ambiguous
any other clause identifier or other keyword available in the data definition syntax for t
member type.

10. A record containing the database’s data definition statement can be inserted into the
dictionary’s source data set by a suitable command and an encoded record can subse
be generated and inserted into the data entries data set. If, when the encoded record
generated, any file or item whose name appears in the database’s data definition state
has no data entries record, DataManager creates a dummy data entries record for tha
member. The dummy record is created as a dummy file record except where the nam
appears in a BY subordinate clause of a COUPLE clause or in a BY or WITH subordin
clause of a CIPHER clause, in which cases a dummy item record is created.
9

ASG-DataManager ADABAS Interface
Example

See "Introduction" on page 3.

The File Data Definition Statement for ADABAS Files

Format

where:

content declares a group, an item, or an array in the format:

where:

group-name is the name of a group

item-name is the name of an item

FILE ADA BAS

[CONTAINS content [, content].. .]

[DESCRIPTORS member-name-d [UN IQUE] [, member-name-d [UN IQUE]]. .

[SUB-DESCRIPTORS adabas-name I S member-name-s B YTES a [T O b]
 [, adabas-name I S member-name-s B YTES a [T O b]]. . .]

[SUPER-DESCRIPTORS adabas-name I S member-name-p [B YTES a [T O b]]
 [W ITH member-name-p [B YTES a [T O b]]]. . .]. . .]

 [, adabas-name I S member-name-p [B YTES a [T O b]]
 [W ITH member-name-p [B YTES a [T O b]]. . .

[FI ELD-NAMES adabas-name I S group-name
item-name

[, adabas-name I S group-name]. . .]. . .
item-name

[P HONETIC-NAMES adabas-name I S item-name
[, adabas-name I S item-name]. . .]

[common clauses]

 ;
 .

 group-name
 item-name [version]
 (integer) group-name
 item-name-a [version] item-name [version]

[K NOWN-AS local-name] [I NDEXED-BY index-name]
10

3 DataManager Data Definition Statements for ADABAS Databases

on is

r of

at
imes

used

ated

 alias

e

 and

 as

S

e
e

 or
version is an unsigned integer in the range 1 to 15, being a number specifying
which version of the relevant item is relevant to this file. The version is within the
HELD-AS form, or within a defaulted form as stated in Remark 1. If version is
omitted or if the stated version does not exist the lowest numbered existing versi
assumed to be relevant.

integer is an unsigned integer of from one to eighteen digits, being the numbe
times group-name or item-name occurs in the array

item-name-a is the name of an item. This form of array declaration declares th
when the file is processed by an application program or module, the number of t
group-name or item-name occurs in the array is contained in the item
item-name-a .

local-name is a name, conforming to the rules for member names that can be
instead of the name or alias of the contained member, when ADABAS source
statements are generated from this data definition by the DataManager Source
Language Generation facility. The local-name is not separately recorded in the
data dictionary (that is, no dummy data entries record and no index record is cre
for local-name when the data definition in which it appears is encoded) so
local-name cannot be interrogated and can be the same as another name, an
or a catalog classification in the data dictionary. The local-name is the name by
which the contained member is known only within the file defined by this data
definition.

index-name is a name, conforming to the rules for member names, that is to b
used as the index name when COBOL data descriptions are generated by the
DataManager Source Language Generation facility. The index-name is not
separately recorded in the data dictionary (that is, no dummy data entries record
no index record is created for index-name when the data definition in which it
appears is encoded) so index-name cannot be interrogated and can be the same
another name, an alias, or a catalog classification in the data dictionary.

member-name-d is the name of an item or group which is to be recognised as a
DESCRIPTOR in the file being defined. The specified member must be directly or
indirectly contained in the file.

adabas-name is the two character name conforming to the ADABAS rules for ADABA
field names.

member-name-s is the name of an item or group, part of the contents of which is to b
recognised as a sub-descriptor in the file being defined. The specified member must b
directly or indirectly contained in the file.

a is an integer specifying the byte number of the item at which the sub-descriptor field
super-descriptor field is to start. Bytes are counted from the left or right of the item
depending on whether the item is alphanumeric (left) or numeric (right). The first byte
number in this count is 1.
11

ASG-DataManager ADABAS Interface

field

e the

,
,

ds or
r that

ct of
e
b is an integer specifying the last byte number of the item to which the sub-descriptor
or super-descriptor field extends. The value of b must not exceed the length in bytes of the
item.

member-name-p is the name of an item or group, all or part of the contents of which
forms a super-descriptor field in the file being defined. The specified member must be
directly or indirectly contained in the file.

group-name is the name of a group

item-name is the name of an item

common clauses are any of the following clauses, in any order:

ACCESS-AUTHORITY FREQUENCY
ADMINISTRATIVE-DATA N OTE
ALIAS OBSOLETE-DATE
CATALOGUE QUERY
COMMENT SECURITY-CLASSIFICATION
DESCRIPTION SEE
EFFECTIVE-DATE

Remarks

1. Any direct or indirect reference from the CONTAINS clause to an item is assumed to b
HELD-AS form of that item. If the item has no HELD-AS form, default assumptions are
made as to the relevant form of the item, in the order DEFAULTED-AS, ENTERED-AS
REPORTED-AS. The form first encountered in this order is taken as the defaulted form
and version is applied within that form as stated under "Format."

2. If the Source Language Generation facility is used to generate LOADER Definition car
buffer data description statements in respect of this file, and any group or item membe
is directly or indirectly referenced from the contains clause has no entry in a
FIELD-NAMES clause, then DataManager generates a FIELD-NAMES clause in respe
that member. See the specification of the PRODUCE command in "Specification of th
PRODUCE Command for ADABAS Source Language Generation" on page 22.
12

3 DataManager Data Definition Statements for ADABAS Databases

cify in

uced.
rds:

ond

same

iptor,

group

ds or
 a
n
ile

ds in
nd is

ition
clauses
inate

data

quently
is
nt has
mber.
3. If the same item or group appears more than once in the same file, it is possible to spe
the FIELD-NAMES clause the ADABAS names that are to be used for the second and
subsequent occurrences of the item or group when LOADER Definition cards are prod
For example, if these clauses were processed when producing LOADER Definition ca

FIELD-NAMES Al IS ITEM-A,
A2 IS ITEM-A,
A3 IS ITEM-A

the first occurrence of ITEM-A would be generated with the ADABAS name Al, the sec
would be generated with the ADABAS name A2, and so on.

Note:
These restrictions apply when the same item or group appears more than once in the
file:

• It is not possible to define a particular occurrence of the item or group as a descr
while other occurrences of the same item or group are not descriptors

• It is not possible to select the second or a subsequent occurrence of the item or
for use in a record or format buffer.

4. If the Source Language Generation facility is used to generate LOADER Definition car
Format Buffer data description statements in respect of this file, any group specified in
DESCRIPTOR, SUB-DESCRIPTOR, or SUPER-DESCRIPTOR clause is treated as a
item. (If a Record Buffer data description statements are generated in respect of this f
these groups are treated as groups.)

5. If the Source Language Generation facility is used to generate LOADER Definition car
respect of this file, any member whose name appears in the DESCRIPTORS clause a
immediately followed by UNIQUE is treated as a unique descriptor.

6. Common clauses, listed under Format above, can be present in any type of data defin
statement; they are therefore defined separately. Not more than one of each of these
can be declared. If a common clause has a subordinate clause or keyword, the subord
clause identifier or subordinate keyword must not be truncated to an extent where it
becomes ambiguous with any other clause identifier or other keyword available in the
definition syntax for this member type.

7. A record containing the file’s data definition statement can be inserted into the data
dictionary’s source data set by a suitable command and an encoded record can subse
be generated and inserted into the data entries data set. If, when the encoded record
generated, any item or group whose name appears in the file’s data definition stateme
no data entries record, DataManager creates a dummy data entries record for that me
The dummy record is created as a dummy item record.

Example

See "Introduction" on page 3.
13

ASG-DataManager ADABAS Interface

bers
, a

ly

 this
System, Program and Module Data Definition Statements for an
ADABAS Environment

Introduction

The data definition statements for DataManager SYSTEM, PROGRAM, and MODULE mem
acting on conventional files are described in another publication. For the ADABAS Interface
further clause, the PROCESSES ADABAS clause, is included in the format of these data
definition statements. This section describes that clause.

Specification of the PROCESSES Clause

Format

where:

access-name is a name that is valid in the programming language of the SYSTEM,
PROGRAM or MODULE member in whose data definition this PROCESSES clause
appears. Each access-name must be unique within the member.

filename is the name of a member that is a FILE ADABAS member

details is as shown in Figure 1 on page 19

where:

item-name and item-name-b are the names of ITEM members that are direct
or indirectly contained by filename

version is an unsigned integer in the range 1 to 15, being a number specifying
which version of the specified or defaulted form of the relevant item is relevant to
GIVING or USING clause. If version is omitted, a default is taken as stated in
Remark 8.

item-name-a is the name of an ITEM member whose HELD-AS form has a
CONTENTS clause that specifies a single literal that is an ADABAS Edit Mask

PROCESSES ADABAS

ACCESS access-name

FILE filename G IVING details [, details]. . .

USING

AS access-name-2 I N process-name

[ACCESS access-name

FILE filename G IVING details [, details]. . .]. . .

AS access-name-2 I N process-name

USING
14

3 DataManager Data Definition Statements for ADABAS Databases

t is

s of

le

use
r

 and

 as

h
n is an unsigned integer in the range 1 to 15. where En specifies an ADABAS Edit
Mask

item-name-c is the name of an ITEM member whose HELD-AS form’s
form-description specifies the length and format of the count field

i and j are unsigned integers in the range 1 to 191

group-name-a is the name of a GROUP member with multiple occurrences tha
directly contained by filename

g and h are unsigned integers in the range 1 to 99

group-name is the name of a GROUP member that is directly or indirectly
contained by filename

nn is an unsigned integer in the range 1 to 255, being the number of occurrence
the following literal. If (nn) is omitted, a default of (1) is assumed.

literal is a character string of not more than 255 printable and/or non-printab
characters

local-name is a name, valid in the programming language of the SYSTEM,
PROGRAM or MODULE member in whose data definition this PROCESSES cla
appears, that can be used instead of the member name or alias or filler name (o
equivalent) to identify item-name or group-name or the literal when ADABAS
source language statements are generated from this data definition by the
DataManager Source Language Generation facility. The local-name is not
separately recorded in the data dictionary (that is, no dummy data entries record
no index record is created for local-name when the data definition in which it
appears is encoded) so local-name cannot be interrogated and can be the same
another name, an alias or a catalog classification in the data dictionary. The
local-name is the name by which item-name , group-name or the literal is
known only within this processing view. It must be unique within the processing
view.

access-name-2 is an access name that appears in the PROCESSES clause of the
member specified by process-name

process-name is the name of a SYSTEM, PROGRAM, or MODULE member

Remarks

1. The PROCESSES clause must be immediately followed by the keyword ADABAS, to
define the context in which the clause applies.

2. The PROCESSES clause can contain any number of ACCESS clauses, each of whic
includes either a subordinate FILE clause or a subordinate AS clause.
15

ASG-DataManager ADABAS Interface

d by
essing

d of

ce
BAS
at
en

are

he
AS

nless

e

3. Each ACCESS clause defines the processing view of an ADABAS file that is processe
the system, program or module in whose data definition the clause appears. The proc
view is defined either directly by a FILE subordinate clause, or indirectly by an AS
subordinate clause.

4. No validation is performed on access-name on encoding; but the PRODUCE comman
the Source Language Generation facility checks that access-name is a valid name in the
source language being generated.

5. The GIVING and USING keywords are synonymous to DataManager.

6. The details defined in the GIVING or USING subordinate clause are used by the Sour
Language Generation facility in the generation of data description statements for ADA
record buffers and format buffers. The rules and restrictions applying to ADABAS form
definitions must therefore be applied when specifying a GIVING or USING clause. Wh
format buffers are produced, statements are generated only for item-names and
group-names directly specified in the GIVING or USING clause. When record buffers
produced, statements are generated both for item-names and group-names specified
in the GIVING or USING clause, and for the groups and items directly or indirectly
contained by the group-names .

7. If no form is specified for item-name (where permitted in the Format specification) in t
GIVING or USING clause, a default of HELD-AS is assumed. If the item has no HELD-
form, default assumptions are made as to the relevant form of the item, in the order
DEFAULTED-AS, ENTERED- AS, REPORTED-AS. The form first encountered in this
order is taken as the defaulted form, and version is applied within that form. That is, u
overridden by a form declaration in the GIVING or USING clause, the form of
item-name contained by filename is assumed to apply.

8. If no version is stated for item-name (where permitted in the Format specification) in th
GIVING or USING clause, the version of item-name contained by filename is assumed
to apply. If no version is stated for item-name-a or item-name-c , the lowest
numbered version is assumed to apply.
16

3 DataManager Data Definition Statements for ADABAS Databases

ents

er
n

on is

RU

single
9. If the Source Language Generation facility is used to generate data description statem
for ADABAS format buffers, then:

• If EDIT-NAME is specified, the literal from the CONTENTS IS clause of the
HELD-AS form of item-name-a is used as the Edit Mask for the format
definition(s) generated for item-name or group-name . If item-name-a has no
HELD-AS form, default assumptions are made as to the relevant form, in the ord
DEFAULTED-AS, ENTERED-AS, REPORTED-AS. The form first encountered i
this order is taken as the defaulted form, and version is applied within that form.

• If EDIT-CODE is specified, the Edit Mask defined by En is used for the format
definition(s) generated for item-name or group-name .

• If COUNTS is specified, format definitions are generated as count definitions. If
item-name-c has no HELD-AS form, default assumptions are made as to the
relevant form, in the order DEFAULTED-AS, ENTERED- AS, REPORTED-AS.
The form first encountered in this order is taken as the defaulted form, and versi
applied within that form. If AS item-name-c is omitted, a default count field
specification of one byte, binary, is assumed.

• If item-name OCCURRENCES is specified, item-name is a multiple value field,
and the OCCURRENCES clause specifies its occurrence indices

• If group-name OCCURRENCES is specified, group-name is a periodic group,
and the OCCURRENCES clause specifies its occurrence indices

• If an IN clause is specified it denotes that item-name or group-name is
contained in a periodic group, group-name-a , whose occurrence indices are
specified in the IN clause’s subordinate OCCURRENCES clause.

• If item-name OCCURRENCES is specified with IN group-name-a
OCCURRENCES, this indicates that item-name is a multiple value field contained
in the periodic group group-name-a . The OCCURRENCES clauses specify the
occurrence indices of item-name and group-name-a .

• If OCCURRENCES i [,i]... or OCCURRENCES g [,g]... is specified, a format
definition is generated for each specified occurrence index

• If OCCURRENCES i THROUGH j or OCCURRENCES g THROUGH h is
specified, a range specification is generated. The keywords THROUGH and TH
are synonymous.

• If item-name THROUGH item-name-b is specified, a range specification is
generated. The keywords THROUGH and THRU are synonymous. The range of
items involved is the range of items from item-name to item- name-b as they
occur in filename’s records; that is, as they are directly specified in or indirectly
specified via the CONTAINS clause of filename. Hence, item-name-b must occur
later in filename’s records than item-name .

• If (nn) literal is specified, a format definition of a single literal comprising nn
occurrences of the stated literal is generated; except that if the stated literal is a
space character, the generated literal is nnX. (If the stated literal is two or more
spaces, the generated literal is nn occurrences of those spaces.)
17

ASG-DataManager ADABAS Interface

rd
10. If the ADABAS Interface is installed, the truncation limits of the ENTRY-POINT keywo
of the SYSTEM, PROGRAM and MODULE data definition statements becomes:

ENTRY-POINT

Example

See "Introduction" on page 3.
18

3 DataManager Data Definition Statements for ADABAS Databases
F
ig

ur
e

1.
 F

or
m

at
 o

f
de

ta
ils

 in
 P

R
O

C
E

S
S

E
S

 A
D

A
B

A
S

 c
la

us
e

ite
m

-n
a

m
e

 [

 E
N

T
E

R
E

D
-A

S

 [

ve
rs

io
n

]
 [

E
D

IT
-N

A
M

E
 it

e
m

-n
a

m
e

-a
 [

ve
rs

io
n

]
]

H
E L

D
-A

S
R

E
PO

R
T

E
D

-A
S

D
E

F A
U

L
T

E
D

-A
S

ve
rs

io
n

E
D

IT
-C

O
D

E
 'E

n
'

[
 C

O
U

N
T

S

[A
S

ite

m
-n

a
m

e
-c

 [
ve

rs
io

n
]]

]

[I
N

g

ro
u

p
-n

a
m

e
-a

 O
C

C
U

R
R

E
N

C
E

S
 g

 [
,

g
].

 .
 .

]
O

C C
U

R
R

E
N

C
E

S

 i
 [

,
i

].
 .

 .
i

T

H
R

O
U

G
H

j
T

H
R

U

g

T
H

R
O

U
G

H

 h
T

H
R

U

g
ro

u
p

-n
a

m
e

 [

 E
N

T
E

R
E

D
-A

S

 [

E
D

IT
-N

A
M

E
 it

e
m

-n
a

m
e

-a
 [

ve
rs

io
n

]
]

H
EL

D
-A

S
R

E
PO

R
T

E
D

-A
S

D
E

F A
U

L
T

E
D

-A
S

E
D

IT
-C

O
D

E
 'E

n
'

[
 C

O
U

N
T

S

[A
S

ite

m
-n

a
m

e
-c

 [
ve

rs
io

n
]

]

O
C C

U
R

R
E

N
C

E
S

 g

 [
,

g
].

 .
 .

g

T
H

R
O

U
G

H

h

T
H

R
U

[I
N

g

ro
u

p
-n

a
m

e
-a

 O
C

C
U

R
R

E
N

C
E

S
 g

 [
,

g
].

 .
 .

]
g

T

H
R

O
U

G
H

 h

T
H

R
U

ite
m

-n
a

m
e

T
H

R
O

U
G

H

 i
te

m
-n

a
m

e
-b

T
H

R
U

[(
n

n
)]

 '
lit

e
ra

l
'

[K
N

O
W

N
-A

S
 lo

ca
l-

n
a

m
e

}

19

ASG-DataManager ADABAS Interface

.
uage

ted as

R

, any
 binary
bit
cord
ADABAS-related Aspects of the Item Data Definition Statement

Generation of ADABAS Attributes

The ITEM data definition statement (see the ASG-DataManager User’s Guide) can include one of
the ADABAS related form-description keywords VARIABLE, NULL-SUPPRESSED, or FIXED
If present, these keywords control the ADABAS attributes generated when the Source Lang
Generation facility is used to produce LOADER Definition statements; thus:

• VARIABLE results in the generation of a non-suppressed item

• NULL-SUPPRESSED results in the generation of the attribute NU (null)

• FIXED results in the generation of the attribute Fl (fixed).

If none of these keywords is present in the ITEM’s form-description, the ITEM’s length
specification determines the attributes generated; thus:

• If the length is defined as p TO q, and p is greater than or equal to 1, the item is genera
non-suppressed

• If the length is defined as 0 TO q, the attribute NU (null) is generated

• If the length is defined as q, the attribute FI (fixed) is generated.

If the ENTERED-AS form of an item has an associated form-description of
NULL-SUPPRESSED or variable length, then no length attribute is generated when LOADE
Definition Cards are produced by the Source Language Generation facility.

Generation of BITS Items

When the Source Language Generation facility is used to generate LOADER Definition cards
items that are defined to DataManager as BITS items are always generated as byte aligned
fields, regardless of the value of the RNDBIT parameter in the DGADA macro. Thus, if any
items are unaligned, the generated LOADER Definition cards may not be consistent with re
layouts that are produced from the file.
20

4
 4ADABAS Source Language Generation

from DataManager
uts and
ager

form of
ptions

ion
and to
 of the

ribed
hen
tion

ed by
Introduction

The DataManager Source Language Generation facility can be used to produce record layo
ADABAS statements of the following types from encoded data definitions held in a DataMan
data dictionary:

• LOADER Definition Cards. These provide the major part of the input required by the
ADAWAN utility for database loading.

• COBOL, PL/I, or Assembler data description statements for:

— Record buffers

— Format buffers.

Generation of these statements is achieved by use of the PRODUCE command. The basic
the command. which can generate record layouts or COBOL, PL/I or Assembler data descri
for conventional file environments is described in the separate publication ASG-Manager
Products Source Language Generation. Users should refer to that manual for a general descript
of source language generation and of the PRODUCE command. The variation of the comm
produce ADABAS statements of any of the types stated above is described in "Specification
PRODUCE Command for ADABAS Source Language Generation" on page 22.

An installation macro, DGADA, permits the output from these variations of the PRODUCE
command to be tailored to conform to the particular installation’s standards. DGADA is desc
in the Appendix, "The Macro DGADA," on page 33. Certain parts of the output generated w
producing ADABAS buffers can be further tailored by means of these DataManager installa
macros:

• DGCOB, if the buffers’ data descriptions are produced in COBOL

• DGPLI, if the buffers’ data descriptions are produced in PL/I

• DGBAL, if the buffers’ data descriptions are produced in Assembler.

These macros are documented in the Source Language Generation manual.

In the specifications in this chapter, any ASG-defined conditions or values that can be tailor
the Controller are annotated "(unless tailored, see xxxx)", where xxxx is the relevant keyword of
the appropriate macro, DGADA, DGCOB, DGPLI,or DGBAL.
21

ASG-DataManager ADABAS Interface

 file.
betic
mal

er

 that:
Specification of the PRODUCE Command for ADABAS Source
Language Generation

Format

where:

filename is the name of an encoded FILE ADABAS member

library-name is the name to be given to the generated library member in the output
It must be not more than sixteen characters, of which the first character must be alpha
or one of the characters #, £ (or local currency symbol with the internal code hexadeci
5B), % or @.

language is any one of:

COBOL PL/I
ASSEMBLER PLI
BAL PL/1
ALC PL1

process-name is the name of an encoded SYSTEM, PROGRAM or MODULE memb
that has a PROCESSES ADABAS clause

access-name is an access-name defined in a PROCESSES ADABAS clause in the
member named in the USED-IN clause

control-options is as defined in the Source Language Generation manual, except

PRODUCE

ADABAS LOADER-DEFINITIONS

RECORD-LAYOUTS

FROM filename [AS library-name
[, filename [AS library-name]]. . .

[R ECORD-LAYOUTS FOR] AD ABAS R ECORD-BUFFERS
AND FORMAT-BUFFERS

BUFFERS

[I N language]

FROM process-name [AS library-name]
[, process-name [AS library-name]
access-name [AS library-name]

USED-IN process-name
[, access-name [AS library-name]

[control-options] ;
.

22

4 ADABAS Source Language Generation from DataManager

ther

be
ces.

respect
output-form-1 in the GIVING clause is:

 [s] N OTES
 [s] D ESCRIPTIONS
 K NOWN-AS
 ACCESS-NAME-PREFIX
 U PDATES

output-form-2 in the OMITTING clause is:

 N OTES
 D ESCRIPTIONS
 AL IAS
 K NOWN-AS
 ACCESS-NAME-PREFIX
 U PDATES

GIVING FD-ONLY
 RECORDS-ONLY
 ALL-FILE

are not relevant in this command.

Remarks

1. The first two elements of the command must be PRODUCE ADABAS, in that order. O
elements present in the command must be in the order shown under Format.

2. Up to a maximum of 16 filenames or process-names or access-names can be
declared in the FROM clause. If two or more are declared, each except the first must
preceded by a comma; the comma can optionally be preceded and/or followed by spa
Names are processed in the order in which they appear in the FROM clause.

3. Acceptance of the PRODUCE command is in respect of each filename ,
process-name , or access-name individually. If a member named in the FROM
clause or in its subordinate USED-IN clause:

• Is not encoded, or

• Is not present in the data dictionary, or

• Is of a member type that is not valid in the context, or

• Is protected against access by the user (see remark 4),

or if an access-name in the FROM clause is not defined in the member named in the
subordinate USED-IN clause, then a message is output, no generation takes place in
of that name, and processing continues with the next name or command.
23

ASG-DataManager ADABAS Interface

he
r than
at
h from

te,
f no
cess is

 in
; see
rom
d

use

nd
n that
ven;

ds
 from

mit

eric

ffers

OR,
at
4. Acceptance of the PRODUCE command is subject to access security levels (for each
filename or process-name individually, as stated in remark 3). If a member named in t
FROM clause or in its subordinate USED-IN clause has an access security level highe
the user’s (general or specific) security level, the command is rejected in respect of th
member. If the command can be accepted in respect of a member, but a reference pat
that member includes a protected member with an access level higher than the user’s
security level, then:

• If LOADER-DEFINITIONS are being generated the reference path is, if appropria
followed to its end to determine the total storage space required, but the name o
member in that reference path beyond the last member to which the user has ac
given; instead, a filler name is generated.

• If record buffers and/or format buffers are being generated, and:

— The protected member is directly referenced in a GIVING or USING clause
process-name (or in the member named in an AS clause of process-name
"Specification of the PROCESSES Clause" on page 14), then it is omitted f
the generated buffer (that is, no filler is generated in respect of the protecte
member)

— The protected member is indirectly referenced from a GIVING or USING cla
in process-name (or in the member named in an AS clause of
process-name), then the reference path is, if appropriate, followed to its e
to determine the total storage space required, but the name of no member i
reference path beyond the last member to which the user has access is gi
instead, a filler name is generated.

5. If LOADER-DEFINITIONS is stated in the command, a set of LOADER Definition Car
is generated for each filename specified in the FROM clause. Fields may be generated
dictionary ITEM members. If an item is defined as being NUMERIC-CHARACTER
(unpacked decimal) in form and over 27 bytes in length, then this is greater than the li
allowed for such a field (standard format U) by ADABAS. The DataManager Source
Language Generation facility will generate such over-length numeric fields as alphanum
(ADABAS standard format A) fields by default.

6. If RECORD-BUFFERS is stated in the command and is not preceded by
RECORD-LAYOUTS FOR, data description statements are generated for the record bu
for each process-name or access-name specified in the FROM clause.

7. If FORMAT-BUFFERS is stated in the command and is not preceded by
RECORD-LAYOUTS FOR, data description statements are generated for the format
buffers for each process-name or access-name specified in the FROM clause.

8. If BUFFERS is stated in the command and is not preceded by RECORD-LAYOUTS F
data description statements are generated both for the record buffers and for the form
buffers for each process-name or access-name specified in the FROM clause.
24

4 ADABAS Source Language Generation from DataManager

 the

d.

s to the

nts can
data

 in

, a

,

f

9. If RECORD-BUFFERS, FORMAT-BUFFERS or BUFFERS is stated in the command,
language in which the data description statements are generated is determined by
process-name’s LANGUAGE clause unless overruled by an IN clause in the comman
Languages recognised are as stated for language under Format above. If (with
RECORD-BUFFERS FORMAT-BUFFERS, or BUFFERS stated in the command):

• Any other language is specified in the IN clause of the command, or

• There is no IN clause in the command and process-name has no LANGUAGE
clause, or has a LANGUAGE clause that specifies some other language.

then an error message is output, no generation takes place and DataManager proceed
next command.

10. AS clauses are relevant only if ADABAS LOADER Definition Cards or buffer data
description statements are being produced and written to an output data set. (Stateme
be generated for listing on a printer or terminal only, without being written to an output
set; see the control-options specifications.)

11. Each AS clause present in the command relates only to the filename , process-name ,
or access-name that immediately precedes it. It declares a name under which the
generated LOADER Definition or source language data description is to be catalogued
the output source library data set.

12. For each filename , process-name , or access-name for which no AS clause is
specified, library-name is defaulted to filename , process-name , or
access-name respectively if the name conforms to the length restriction on
library-name . The length restriction on library-name is a maximum of eight
characters (unless tailored, see MEMLEN). If the name is longer than the permitted
maximum length for library-name , no generation takes place in respect of that name
message is output, and processing continues with the next name or command.

13. Library-names , whether declared or defaulted, are not subject to any name editing
ALIAS or WITH-ALIAS clauses (see control-options) that may be present in the
command.

14. If RECORD-LAYOUTS FROM filename is stated in the command, record layouts are
generated from the encoded FILE ADABAS members specified in the FROM clause. I
RECORD-LAYOUTS FOR is stated followed by RECORD-BUFFERS,
FORMAT-BUFFERS, or BUFFERS, then record layouts for the appropriate buffers are
generated from each process-name or access-name specified in the FROM clause. If
RECORD-LAYOUTS AND is stated followed by RECORD-BUFFERS,
FORMAT-BUFFERS, or BUFFERS, then both record layouts and data description
statements are generated for the appropriate buffers.

15. The control-options clause GIVING ACCESS-NAME-PREFIX overrides the
ACCNAM=NO keyword usage of the DGADA macro. (The supplied value of the
ACCNAM keyword is YES.) Generated names for fields in buffers are prefixed with
access-name .

16. The control-options clause OMITTING ACCESS-NAME-PREFIX overrides the
ACCNAM=YES keyword usage of the DGADA macro. Generated names for fields in
buffers are not given a prefix of access-name .
25

ASG-DataManager ADABAS Interface

he

 of

le
t is

g
k 23. If

nd 22,

d, in

 21
med
17. The control-options clause GIVING UPDATES overrides the UPDATES=NO keyword
usage of the DGADA macro. (The supplied value of the UPDATES keyword is YES.) T
file member’s source record will be updated as explained in remark 21.

18. The control-options clause OMITTING UPDATES overrides the UPDATES=YES value
the DGADA macro. No file member’s source record will be updated by the PRODUCE
command.

19. If SEQUENTIAL is stated in the output-control-options and control-card is
not stated (see the publication ASG-Manager Products Source Language Generation), then
no control card is output (unless tailored, see CONCARD).

20. Other control-options keywords and clauses are as stated in the publication
ASG-Manager Products Source Language Generation.

21. The FILE member specified in:

• The FROM clause, if producing LOADER Definition Cards, or

• The ACCESS clause of process-name (or in the member named in an AS clause
of process-name), if producing buffer data description statements

is examined to ensure that an entry appears in its FIELD-NAMES clause (see "The Fi
Data Definition Statement for ADABAS Files" on page 10) for every group and item tha
directly or indirectly referenced from its CONTAINS clause. If any such entry is missin
DataManager generates an adabas-name for the group or item, as described in remar
the PRODUCE command is issued in a non-frozen status and the user has sufficient
authority to alter and to re-encode the FILE member, then, subject to remarks 17, 18 a
(or unless tailored, see UPDATES), for each DataManager-generated adabas-name ,
DataManager inserts a separate clause at the end of the FILE member’s source recor
this format:

FIELD-NAMES adabas-name IS group-name
 item-name

DMR-NOTE 'GENERATED BY DataManager AT hh.mm ON dd mm yy '

The member is then re-encoded. This ensures that the same adabas-names are used from
one PRODUCE command to the next, and thus that the same adabas-names are used for
LOADER Definition cards as for buffer data description statements.

22. If the user has insufficient authority to re-encode the FILE member, then no member’s
source record is updated by the PRODUCE command. Thus, if any member directly
referenced by any FILE member that is specified in the command as stated in remark
cannot be accessed by the user, then no insertion of FIELD-NAMES clauses is perfor
by the PRODUCE command.
26

4 ADABAS Source Language Generation from DataManager

s

f

s:

ving

e

 (other
nt

lar
23. Any adabas-names generated as stated in remark 21 are generated thus:

• The member-name , alias , or local-name is selected, as determined by
control-options clauses of the PRODUCE command and the keyword value
of the macro DGADA

• If producing LOADER Definition cards, any editing specified in editing clauses o
the control-options is applied

• The resulting name is submitted to the final editing described in remark 24.

24. After all editing specified in editing clauses of the control-options has been
completed, DataManager performs a final automatic editing of all adabas-names
generated for use in LOADER Definition cards or buffer data definition statements, thu

• If the name is longer than two characters, it is reduced to two characters by remo
middle characters

• If the first character of the resulting name is non-alphabetic, or if the name is
otherwise an illegal ADABAS name, or if it duplicates a previous adabas-name
output for this FILE member or an adabas-name specified in the FILE member, a
filler name is substituted.

25. If buffer data description statements are produced, then after all editing specified in th
DGADA macro and all editing specified in editing clauses of the control-options has
been completed, DataManager performs a final automatic editing of generated names
than adabas-names , see remark 24) to ensure conformity with the rules of the releva
source language, by:

• Removing any characters that are illegal in the particular source language

• Shortening any names that are longer than the maximum permitted in the particu
source language by removing middle characters.

Example

For examples of the PRODUCE command and the resulting output, see the ASG-DataManager
Example Book.
27

ASG-DataManager ADABAS Interface
28

5
 5DataManager/ADABAS Correspondence

Tables
n
The tables in this chapter indicate the correspondence between ADABAS LOADER Definitio
Cards and DataManager data definitions, and between ADABAS Format Buffers and
DataManager data definitions.

ADABAS/DataManager Correspondence: LOADER Definition Cards

ADABAS DataManager

level number Generated by PRODUCE command

fld-name item-name or group-name from CONTAINS or
FIELD-NAMES clauses of a FILE

std-length ADABAS member

ITEM length*

std-length not
specified or zero

ITEM-ENTERED-AS* variable length

ITEM-ENTERED-AS NULL-SUPPRESSED

std-format A ITEM CHARACTER*

std-format B ITEM BINARY*

std-format G ITEM FLOATING-POINT*

std-format P ITEM PACKED-DECIMAL*

std-format U ITEM NUMERIC-CHARACTER*

def-option FILE ADABAS

 DE DESCRIPTORS item-name

 FI CONTAINS item-name (not variable length)

(Not NUMERIC-CHARACTER, unless tailored. See
NUMCHAR.)

 NU CONTAINS item-name (variable length, minimum
0)

(NUMERIC-CHARACTER unless tailored. See
NUMCHAR.)

 default length
 option

CONTAINS item-name (veriable length, minimum
0)
29

ASG-DataManager ADABAS Interface

d
ault.

d for a
tated.
* These attributes belong to LOADER INPUT.

Note:
LOADER Definition Cards generated from DataManager data definitions may include fields
generated from dictionary ITEM members. If an item is defined as being
NUMERIC-CHARACTER, with length over 27 bytes, then this is greater than the limit allowe
for such a field by ADABAS. DataManager will generate such fields as alphanumeric by def

In this table, DataManager elements are from the details (see Figure 1 on page 19) specifie
PROCESSES clause of a SYSTEM, PROGRAM, or MODULE member, unless otherwise s

 MU (N)
 MU

CONTAINS (integer) item-name

 item-name

 PE (n)
 PE

CONTAINS (integer) group-name

 item-name

optional user
comments normally
COBOL or English
language field
name

Member name of the GROUP or ITEM directly or
indirectly contained by the FILE ADABAS
member.

ADABAS/DataManager Correspondence: Format Buffers

ADABAS DataManager

fld-name adabas-name from FIELD-NAMES clause of a FILE
ADABAS member

fld-name i item OCCURRENCE i
 group

fld-name i,
fld-name j

 item OCCURRENCES i,j
 group

fld-name i-j item OCCURRENCES i THROUGH j
 group THRU

fld-name g (i- j),
fld-name h(i-j)

 item OCCURRENCES i THROUGH j
 THRU
 IN group-a OCCURRENCES g,h

fld-name g-h (i-j) item OCCURRENCES i THROUGH j
 THRU
 IN group-a OCCURRENCES g THROUGH h
 THRU

ADABAS/DataManager Correspondence: LOADER Definition Cards

ADABAS DataManager
30

5 DataManager/ADABAS Correspondence Tables
fld-name g(i),
fld-name g(j),
fld-name h(i),
fld-name h(j)

item OCCURRENCES i,j
 IN group-a OCCURRENCES g,h

fld-name -
fld-name

item THROUGH item-b
 THRU

fld-nameC item COUNTS [AS item-name-c]
 group

nX (nn)' '

'literal' (nn)'literal'

length
format

from form-description of the form/version of
 item indicated in details if different
 group
from the form/version in the FILE member.

E1 to E15 EDIT-CODE 'En' or EDIT-NAME item-name-a (via
CONTENTS clause).

ADABAS/DataManager Correspondence: Format Buffers

ADABAS DataManager
31

ASG-DataManager ADABAS Interface
32

Appendix

The Macro DGADA
E

ble
r is
tion
ribed in
The macro DGADA enables the generation of ADABAS source statements by the PRODUC
command of DataManager to be tailored to conform to a particular installation’s standards.

The macro DGADA is supplied as a source module on the installation magnetic tape. The ta
below lists the keywords of this macro, for which values can be specified when DataManage
installed. If the supplied default values of all of these keywords are acceptable, no further ac
need be taken in respect of this macro. If any values are to be changed, the procedure desc
the publications ASG-Manager Products Installation in OS Environments or ASG-Manager
Products Installation in DOS Environments must be followed. The macro assembles as the
DataManager module DFU16.

The Macro DGADA: Keywords Specifiable on Installation

Keyword Specifies Default Value Alternate Value

ACCNAM Whether access-name to be prefixed
to names of buffers and their constituent
fields.

YES NO

ACHAR The hexadecimal values of any
additional characters that are to be
accepted for output in names produced
by the Source Language Generation
facility, to enable characters not in the
standard source language character set to
be output (see Note 1).

No default Any valid
hexadecimal value,
or a sublist of such
values.

ACSMETH The type of file to be generated by a
PRODUCE command.

BPAM QSAM

ALIAS Whether ADABAS specific aliases are
to be generated instead of member
names.

NO YES (see Note 2)

ALLFILL Whether all names of fields in buffers to
be filler names.

NO YES

ANFILL Whether the filler name from FSTART
is to be increased alphanumerically in
the junior position (i.e., X0, X9, XA,
XZ, Y0) instead of numerically (i.e., X0,
X9, Y0, Y9).

YES NO

(i.e., numeric
increments)
33

ASG-DataManager ADABAS Interface
AUTOCHK Check for and convert fillers. YES NO

CNTLIT Count literal to be added to buffer
names.

'COUNT' Any 1- to 32-
character name
within delimiters

CNTPRE Prefix names of fields in buffers with
value of CNTLIT (when appropriate).

NO YES

CNTSUF Suffix names of fields in buffers with
value of CNTLIT (where appropriate).

YES NO

COLNOTE Column number where DataManager
comment of "real" member name
commences.

46 An integer greater
than 46

CONCARD Whether a control card is to be produced.NO YES (see Note 3)

DDNAME Default library name. 'GENLIB' A delimited string
of 1 to 8 characters

DESC Reserved for future use. NO None

FBUFLIT Literal to be added to names of fields in
format buffer.

'FB' Any 1- to 32-
character name
within delimiters

FBUFPRE Prefix names of fields in format buffer
with value of FBUFLIT.

NO YES

FBUFSUF Suffix names of fields in format buffer
with value of FBUFLIT.

YES NO

FORBUF Name for format buffer. 'FORMAT-
BUFFER'

Any 1- to 32-
character name
within delimiters

FSTART The two-digit ADABAS name to be
used as the start name when generating
filler names.

'X0' Any valid
delimited
ADABAS name

HYPHEN Whether hyphens are to be added to
prefixes and suffixes.

YES NO

KNOWNAS Whether local-names from
KNOWN-AS clauses are to be generated
instead of member names.

NO YES

LIBCC The format of the control card output as
the first card of a QSAM file (unless
overridden by control card in an
ONTO clause).

See the Source
Language
Generation
manual.

A delimited
character string of
1- to 72-characters
including question
mark (?)

MAXLEV Maximum ADABAS level number. 7 None (see Note 4)

The Macro DGADA: Keywords Specifiable on Installation

Keyword Specifies Default Value Alternate Value
34

Appendix - The Macro DGADA
MAXLIT Maximum literal length for Format
Buffer literals.

40 20 to 255

MAXLOAD The maximum number of definition
cards to be produced before an error
message is issued.

500 Any valid number

MAXMU Maximum number of multiple values in
an MU field.

191 None (see Note 4)

MAXPE Maximum number of occurrences in a
periodic group.

99 None (see Note 4)

MEMLEN Maximum length of library-name . 8 Up to 16

NONAME Whether member-name , alias , or
local-name element to be omitted
from names of fields in buffers.

NO YES

NOTE Reserved for future use. NO None

NUMCHAR Whether NUMERIC-CHARACTER
form-descriptions in ITEM members are
to generate NU or FI options on
LOADER Definition Cards.

NU FI

RBUFLIT Literal to be added to names of fields in
record buffer.

'RB' Any 1- to 32-
character name
within delimiters

RBUFPRE Prefix names of fields in record buffer
with value of RBUFLIT.

NO YES

RBUFSUF Suffix names of fields in record buffer
with value of RBUFLIT.

YES NO

RECBUF Name for record buffer. 'RECORD-
BUFFER'

Any 1- to 32-
character name
within delimiters

RNDBIN Whether binary items are to be rounded.NO YES

RNDBIT Whether bit string fields should be
generated with byte alignment (see Note
5).

YES NO

UNIQ Whether a number is to be inserted
immediately following the values of
FBUFLIT and RBUFLIT to make field
names unique (if necessary).

YES NO (number will
be added on end of
name)

UPDATES Whether a file member’s source record
is to be updated by the PRODUCE
command.

YES NO

The Macro DGADA: Keywords Specifiable on Installation

Keyword Specifies Default Value Alternate Value
35

ASG-DataManager ADABAS Interface

S

, by
 user
his way
sed.

 for
-AS

, the

d in
Notes

1. The standard Source Language Generation facility output character set for the ADABA
Interface is that defined in the ADABAS data definition language specification. This
character set can be extended to allow non-standard characters to be output in names
entering the hexadecimal value of each required character as a value to ACHAR. The
should ensure that any extra characters that are added to the output character set in t
are used only in ways that are permitted by the software with which DataManager is u

2. If ALIAS=YES and KNOWNAS=YES both apply, then when a data name is generated
a member that has an ALIAS clause and is subject to a containing member’s KNOWN
clause, the KNOWN-AS local-name takes precedence.

3. When the value CONCARD=NO is used, to suppress the generation of a control card
production of BKEND cards is also suppressed.

4. The values of MAXLEV, MAXMU, and MAXPE are ADABAS constants for which no
alternative values are available. Provision has been made in the macro for declaring
alternative values in case ADABAS should permit alternative values in the future.

5. The effect of the RNDBIT parameter is overridden by any alignment specification state
the data definition of any group, record, or file that contains the bit string item.
36

Index
A
ACCNAM 33
ACHAR 33
ACSMETH 33
ADABAS

aliases 5–6
attributes 20
buffers 1–2, 13, 17, 21, 24

producing data description
statements 12, 21, 24

producing record layouts 21, 25
entity names 5
field names 5–6, 12, 26
fields 5
files 3–5, 10
member-type keywords in

commands 1
ADABAS-DATABASE 1, 4
ADAWAN utility 21
ALIAS 33
Aliases 25, 27, 36
ALLFILL 33
ANFILL 33
AUTOCHK 34

B
BITS items 20
Buffer data description statements 1–2
Buffers

data description statements 12–13,
25–26

BULK command 1

C
Cipher code 8–9
CNTLIT 34
CNTPRE 34
CNTSUF 34
COLNOTE 34
Commands

ADABAS member-type keywords 1
CONCARD 34
Control card 26
Coupling files 3, 9

D
DATAMANAGER-generated ADABAS

names 26
DDNAME 34
DESC 34
Device type for holding files 8
DFU16 33
DGADA macro 21, 25–27
DGBAL macro 21
DGCOB macro 21
DGPLI macro 21
DMR-NOTE 26
Dummy members 9, 11, 13, 15

E
Edit mask 14, 17
Editing of names 27
Encoding of FILE members 26
Example 3

F
Facilities 1
Facilities offered by the interface

summary 1
FBUFLIT 34
FBUFPRE 34
FBUFSUF 34
Field generation 24
File coupling 3, 9
File device types 8
FILE members 4–5, 15, 25
FORBUF 34
FSTART 34

G
GLOSSARY command 1

H
HYPHEN 34
37

ASG-DataManager ADABAS Interface

38
I
index-name 11
Installation macros 21
ITEM

data definition statement 20
ITEM members 14

K
KNOWNAS 34
KNOWN-AS clauses 6, 36

L
Lengths of names 5, 24–25
LIBCC 34
LIST command 1
LOADER 1

definition cards 1–2, 20–21, 24, 26
local-name 11

M
Macro

DGADA 21, 33
DGBAL 21
DGCOB 21
DGPLI 21

Macro DGADA 25–27
MAXLEV 34
MAXLIT 35
MAXLOAD 35
MAXMU 35
MAXPE 35
Member types

summary of 1
Member-type keywords in commands 1
MEMLEN 35
MODULE members 4, 14
Multiple value fields 5, 17

N
Names

editing 27
length 5, 24–25
of ADABAS entities 5
of ADABAS fields 6, 8

NONAME 35
NOTE 35
NUMCHAR 35

P
PERFORM command 1
Periodic group fields 5, 17
PROCESSES clause 14–15, 19
PRODUCE command 21–22
PROGRAM members 4, 14–15
PROTECT command 9

R
Range specification 11, 14, 17
RBUFLIT 35
RBUFPRE 35
RBUFSUF 35
RECBUF 35
Record

layout generation 1–2, 21, 25
Re-encoding of FILE members 26
Reference paths 24
REPORT command 1
RNDBIN 35
RNDBIT 35

S
Security levels 24
Source Language Generation 2, 5, 11–13,

15–17, 20–21
Sub-descriptor 11, 13
Super-descriptor 11–13
SYSTEM members 4, 14–15, 18

U
UNIQ 35
UPDATES 35

W
WHAT command 2
WHICH command 1–2

ASG Worldwide Headquarters Naples Florida USA I asg.com

	CD Contents
	Contents
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	P
	R
	S
	U
	W

	Publication Conventions
	ASG Support Numbers
	Business Hours Support
	Non-Business Hours - Emergency Support

	ASG Web Site
	Enhancement Fax Form
	Preface
	About this Publication
	Requesting Publication Changes

	DataManager/ADABAS Interface Facilities
	ADABAS Databases and DataManager
	Introduction
	Further Considerations
	ADABAS Fields
	Names of ADABAS Entities

	DataManager Data Definition Statements for ADABAS Databases
	The ADABAS-DATABASE Data Definition Statement
	The File Data Definition Statement for ADABAS Files
	System, Program and Module Data Definition Statements for an ADABAS Environment
	Introduction
	Specification of the PROCESSES Clause

	ADABAS-related Aspects of the Item Data Definition Statement
	Generation of ADABAS Attributes
	Generation of BITS Items

	ADABAS Source Language Generation from DataManager
	Introduction
	Specification of the PRODUCE Command for ADABAS Source Language Generation

	DataManager/ADABAS Correspondence Tables
	Appendix

	name:
	number:
	contact name:
	publication:
	product:
	version number:
	pub date:
	comments:

